

Available online at www.sciencedirect.com

Journal of Catalysis 234 (2005) 206-218

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

Sulfur deactivation of Pt/SiO₂, Pt/BaO/Al₂O₃, and BaO/Al₂O₃ NO_x storage catalysts: Influence of SO₂ exposure conditions

Jazaer Dawody^{a,b,*}, Magnus Skoglundh^{a,c}, Louise Olsson^{a,c}, Erik Fridell^{a,b}

^a Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

^b Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

^c Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Received 19 February 2005; revised 18 May 2005; accepted 29 May 2005

Available online 21 July 2005

Abstract

Flow reactor experiments were performed to study the effect of $SO_2 + O_2$ and $SO_2 + H_2$ exposures on the NO_x storage performance of Pt/BaO/Al₂O₃ and BaO/Al₂O₃ catalysts. In addition, Pt/SiO₂ samples were used to study the interaction between Pt and SO₂ under the two exposure conditions. For BaO/Al₂O₃ the two SO₂ exposure conditions caused similar deactivation of the NO_x storage capacity, whereas for Pt/BaO/Al₂O₃ the decline in the NO_x storage capacity was faster during the SO₂ + H₂ exposure than for SO₂ + O₂ exposure. The presence of Pt enhances the adsorption of SO₂ for both SO₂ exposure conditions. Quantitative analysis of sulfur showed that exposure to $SO_2 + O_2$ caused higher accumulation of sulfur in Pt/BaO/Al₂O₃ samples in comparison with $SO_2 + H_2$ exposure. Thus there is no correlation between the total amount of adsorbed sulfur in the samples and the reduction of the NO_x storage capacity, probably because of the adsorption of sulfur on sites not necessarily important for the NO_x storage process.

© 2005 Elsevier Inc. All rights reserved.

Keywords: NO_x storage catalysts; Sulfur deactivation; Pt; BaO; Al₂O₃; SiO₂; SO₂

1. Introduction

Lean-burn gasoline and diesel engines offer good fuel economy and relatively low CO_2 emissions [1]. However, the presence of large amounts of oxygen in lean-burn and diesel exhausts prevents effective reduction of nitrogen oxides (NO_x) to nitrogen, since the reducing agents in the exhausts are more favorably oxidized by oxygen than by NO_x [2]. To solve this problem, new abatement technologies have been developed, one of which is NO_x storage technology.

The NO_x storage concept is based on incorporation of a storage component into the three-way catalyst (TWC) to store NO_x during lean conditions for a time period of minutes. To regenerate the storage sites, the conditions are switched to rich (oxygen deficit) for a few seconds. The stored NO_x is then released and subsequently reduced over precious metal sites to N_2 by the reducing agents (CO, HC, H_2) [3]. A typical NO_x storage catalyst consists mainly of precious metals such as Pt, Pd, and Rh; a NO_x storage component, usually BaO; and a high-surface-area support like Al_2O_3 on which the precious metal(s) and the storage component(s) are dispersed.

The research regarding the NO_x storage systems comprises investigations of the processes during the storage and regeneration phases and provides good understanding of the catalytic performance of such systems [3–20]. However, great efforts are still needed to improve the performance of the NO_x storage catalysts because of their sensitivity toward sulfur. The presence of sulfur in the fuel and lubricants, even in low concentrations, poisons the catalysts by the formation of stable sulfates with the NO_x storage compounds [21–25]. The decomposition and elimination of sulfate require high temperature treatment [26], which in turn may cause the stor-

^{*} Corresponding author. Fax: +46-31-7723134.

E-mail address: jazaer.dawody@fy.chalmers.se (J. Dawody).

^{0021-9517/\$ –} see front matter $\,$ © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2005.05.017 $\,$

age material to deteriorate and decrease the storage capacity [27]. Sulfur also influences the catalytic activity over the noble metal sites [23,28] and can increase the sintering [29]. Studies of sulfur deactivation of NO_x storage catalysts have shown that (i) the deactivation increases with increased sulfur exposure time or dose [24]; (ii) compounds such as H_2S and COS deactivate the NO_x storage capacity in a way that is similar to the way in which SO_2 does [30,31]; (iii) between 250 and 450 $^{\circ}$ C the exposure to SO₂ decreases the catalytic activity for NO oxidation and the reduction capacity of the precious metal during rich conditions through the accumulation of sulfur-containing species on the precious metal sites [23]; (iv) the rate of sulfur deactivation is higher under rich conditions than during lean exposure [32]; (v) exposure to SO_2 or $SO_2 + O_2$ results in the formation of $BaSO_4$ by a gradual removal of BaCO₃ [30,33]; (vi) small BaSO₄ particles are more easily decomposed than large BaSO₄ particles [34]; and (vii) the decomposition of $BaSO_4$ requires high-temperature treatment [35], but the presence of water decreases the decomposition temperature of BaSO₄ [26].

It has been suggested that the sulfate formation proceeds via the oxidation of SO₂ to SO₃, which reacts with the BaO and Al₂O₃ to form barium and aluminum sulfate, respectively [25]. In a previous work, we found that addition of MoO₃ to Pt/Al₂O₃ enhances the oxidation of NO while suppressing the SO₂ oxidation. However, when MoO₃ was added to a Pt/BaO/Al₂O₃ catalyst, the sulfur deactivation for the modified catalyst proceeded faster than for the unmodified Pt/BaO/Al₂O₃ catalyst [5]. From this and (iv) above it is clear that there is no simple correlation between SO₃ formation and deactivation of the NO_x storage capacity.

In this work we have investigated the influence of the SO₂ exposure conditions on the deactivation of the NO_x storage performance. The SO₂ exposure conditions were chosen to be SO₂ only, SO₂ + O₂, and SO₂ + H₂. Sulfur deactivation may take place by the accumulation of sulfur-containing species on three sites that are important for NO_x storage: (1) Pt sites, (2) surface storage sites, and (3) bulk storage sites. Pt/SiO₂ samples were used to study the interaction between SO₂ and Pt under the different exposure conditions, since silica has a low affinity for sulfur. For SO₂ interaction with the two kinds of NO_x storage sites, Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples were used. The experiments and gas feeds used in this work are designed for use in the construction of a micro-kinetic model for sulfur deactivation of NO_x storage catalysts. The model construction is greatly simplified if the number of catalyst components, as well as gas feed components, is reduced. However, the model will be extended gradually to include components important for the NO_x storage and sulfur deactivation. In this work we have chosen to exclude CO₂ and water vapor from the gas system in order to study the effect of SO₂ exposure under reducing and oxidizing conditions in the absence of these two gas compounds. Both CO₂ and H₂O significantly influence the NO_x storage performance [6]. Sulfur deactivation of NO_x storage catalysts has been observed both with [25,34,36–38]

and without [23,28,30-33,39] H₂O. It has been found that sulfates are more easily reduced when H₂O is present in the gas mixture under rich conditions [26]. We plan to include CO₂ and water vapor in the gas feed in a forthcoming study and to use the results to extend the kinetic model to include the effect of these two gas compounds on the sulfur deactivation process.

2. Experimental

2.1. Sample preparation

Cordierite monoliths (400 cells per square inch) with a length of 20 mm, containing 188 channels, were used to prepare the catalysts used in this work. The preparation of the different types of catalysts is briefly described below. For more details on the preparation method, see Ref. [40].

2.1.1. Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples

We coated six monoliths with alumina by immersing them in an alumina slurry, blowing away excess slurry from the channels, drying them in air at 95 °C for few seconds, and calcining them in air at 500 °C for 2 min. This procedure was repeated until the desired amount of alumina was obtained. Thereafter, the samples were calcined at 600 °C for 2 h. The alumina-coated samples were then provided with barium by impregnation with aqueous $Ba(NO_3)_2$ solution, drying, and calcination. To avoid dissolution of BaO during the impregnation with the Pt solution, BaO was converted to BaCO₃, which is considerably less soluble in aqueous solutions than BaO. We transformed BaO to BaCO₃ by exposing the BaO/Al₂O₃ samples to air in closed sample holders. After 1 week the samples were immersed in a solution of ammonium carbamate for 1 h, dried in air at 130°C, and calcined in air at 500°C for 3 min. Three of the BaCO₃/Al₂O₃ samples were calcined for 2 h (starting at 200 °C and heating to 450 °C with 5 °C/min). The remaining three BaCO₃/Al₂O₃ samples were washed in distilled water and provided with a solution of Pt nitrate $[Pt(NO_3)_2]$. We performed the Pt impregnation by filling the channels with the desired amount of Pt, diluted in distilled water. The samples were then dried in air at 80 °C for 12 h and finally calcined for 2 h, starting at 200 °C, and heated to 450 °C at 5 °C/min. It is likely that BaCO₃ is transformed to BaO during the calcination or as an initial step before the NO_x storage. For this purpose, the samples with and without Pt are referred to as Pt/BaO/Al₂O₃ and BaO/Al₂O₃, respectively.

2.1.2. Pt/SiO₂ and SiO₂ samples

Five monoliths were coated with a silica sol (Bindzil $40NH_3$ 170) by the procedure used for the alumina coating and calcined at 500 °C for 2 h. Four of the samples were impregnated with a Pt solution of tetraammineplatinum

Table 1 Sample washcoat compositions, BET surface area and Pt dispersion

Sample	Al_2O_3	SiO ₂	BaO	Pt	BET	Pt disper-
	(mg)	(mg)	(mg)	(mg)	(m ² /g _{washcoat})	sion (%)
Pt/Si-1		1449		16.8	123	12.0
Pt/Si-2		930		16.8	122	11.3
Pt/Si-3		1051		16.8	120	11.9
Pt/Si-4		980		16.8	120	12.0
SiO ₂		1020				
Pt/Ba/Al-1	597		140	16.9	113	20.4
Pt/Ba/Al-2	623		132	17.3	119	22.1
Pt/Ba/Al-3	606		131	17.9	121	21.1
Ba/Al-1	853		137		n.d. ^a	
Ba/Al-2	711		108		n.d. ^a	
Ba/Al-3	711		127		n.d. ^a	

^a n.d. = not determined.

hydroxide [Pt(NH₃)₄(OH)₂]. The Pt impregnation and calcination were performed with the same procedure as for the Pt/BaO/Al₂O₃ samples.

The compositions of all samples used in this work are given in Table 1.

2.2. Catalyst characterization

The Pt dispersion of the Pt/BaO/Al₂O₃ and Pt/SiO₂ catalysts was determined with the use of N₂O dissociation. For each dissociated N₂O molecule, it is assumed that one gaseous N₂ molecule is formed and one oxygen atom is left on each surface Pt atom according to the following reaction [41]:

$$Pt_s + N_2O(g) \rightarrow Pt-O + N_2(g), \tag{1}$$

where Pt_s denotes a surface Pt atom. The experiments were conducted in a flow reactor with a quartz tube in which the catalyst was placed. A thermocouple used to control the temperature was placed 10 mm in front of the catalyst. Another thermocouple was placed inside the catalyst to measure the catalyst temperature. A mass spectrometer (Balzer QME 120) was connected to the reactor to analyze the outflow gas composition. The gas flow into the reactor was controlled with mass flow controllers. More details about this reactor can be found in Ref. [42].

Before each measurement, the catalyst was pre-oxidized for 10 min in 2% O₂ in Ar, flushed with Ar for 5 min, prereduced in 4% H₂ in Ar, and flushed with Ar for 10 min at 500 °C. The temperature was then decreased to 90 °C, and the catalyst was instantly exposed to 500 ppm N₂O in Ar (gas flow = 200 ml/min) for 20 min. We determined the Pt dispersion by integrating the N₂ (m/e = 28) signal during the N₂O exposure step after subtracting the m/e contribution that originates from the cracking of N₂O in the mass spectrometer.

The specific surface area of the catalysts was determined by nitrogen adsorption with the BET method, with the use of a Digisorb 2600 (Micromertics) instrument.

The Pt dispersion and the specific surface area of the catalysts are given in Table 1.

2.3. Activity measurements

All activity measurements were performed in a flow reactor with a quartz tube supplied with a heating coil connected to a power unit. The temperature was controlled with a PID regulator from Eurotherm and two thermocouples of type K from Pentronic. One thermocouple was placed 10 mm in front of the catalyst, and the other was placed inside the catalyst. The gas mixtures were prepared via an Environics 2000 gas blender containing nine separate mass flow controllers. The outlet flow was analyzed with a chemiluminescense detector (CLD 700) for NO and NO₂ and three nondispersive IR Maihak UNOR 610 instruments for SO₂, CO₂, and N₂O, respectively. A Labview program, specially designed for this equipment, was used to overview the temperature and gases via a PC. The gas flow and space velocity in all experiments were 3500 ml/min and 33 000 h^{-1} , respectively, with Ar as the carrier gas.

Before all activity measurements the samples were pretreated at 500 °C in 8% O₂ in Ar for 10 min, flushed with Ar for 5 min, and finally reduced in 1.8% H₂ in Ar for 20 min.

2.3.1. NO oxidation

The catalytic activity of the fresh Pt/SiO_2 and $Pt/BaO/Al_2O_3$ samples for NO oxidation was tested with temperature-programmed NO oxidation experiments. The pretreated catalysts were stabilized at room temperature in a reaction gas mixture consisting of 450 ppm NO and 8% O_2 in Ar for 1 h. Thereafter, the temperature of the reaction gas mixture increased linearly with 5 °C/min to 450 °C.

2.3.2. SO_2 oxidation

One of the Pt/SiO₂ samples (Pt/Si-1) was used for SO₂ oxidation. The pretreated catalyst was exposed to a reaction gas mixture consisting of 40 ppm SO₂ and 8% O₂ in Ar at 25 °C for 20 min. Thereafter the temperature of the reaction gas mixture was increased, and the activity for SO₂ oxidation was measured at steps from 50 to 600 °C with 50 °C between the steps and for 20 min at each step.

2.3.3. SO_2 exposure to SiO_2

The pretreated SiO₂ sample was exposed to sulfur at $300 \,^{\circ}$ C for 10 min. The gas mixture during the three exposure conditions consisted of (1) 40 ppm SO₂ and 8% O₂ in Ar; (2) 40 ppm SO₂ in Ar; (3) 40 ppm SO₂ and 1.8% H₂ in Ar. After each exposure condition, the sample was flushed with Ar until no outlet SO₂ could be detected.

2.3.4. SO₂ exposure to Pt/SiO₂

Three of the Pt/SiO₂ samples were used to study the interaction between Pt and SO₂ under three different conditions. We did this by exposing each catalyst to SO₂, SO₂ + O₂, or SO₂ + H₂, flushing with Ar, increasing the temperature to 750 °C by 20 °C/min, and treating with oxygen for a few minutes. The Pt/Si-4 sample was exposed to 40 ppm SO₂ in

500

400

NO

Ar, and Pt/Si-3 and Pt/Si-2 were exposed to 40 ppm SO₂ in combination with 8% O₂ or 1.8% H₂, respectively.

2.3.5. NO_x storage and regeneration

The NO_x storage capacity for all Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples was measured before the samples were exposed to sulfur. Three identical NO_x storage and regeneration cycles were performed for each sample. The storage cycles were performed at 300 °C with a gas mixture of 630 ppm NO₂ and 8% O₂ in Ar for 30 min per storage period. To regenerate the storage sites after each NO_x storage step, the samples were flushed with Ar for 10 min, and the temperature was linearly increased in Ar by 20 °C/min to 600 °C (750 °C in the case of BaO/Al₂O₃ samples).

2.3.6. SO_x and NO_x storage

The Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples were treated with sulfur under the same SO_2 exposure conditions as for the Pt/SiO₂ samples. For each SO₂ exposure condition, one Pt/BaO/Al₂O₃ and one BaO/Al₂O₃ sample were used. In the experiments the samples were exposed to sulfur at 300 °C for 20 min and flushed with Ar for 10 min, and a NO_x storage and regeneration cycle was performed as mentioned in Section 2.3.3. For the BaO/Al₂O₃ samples, the thermal regeneration was extended to 750 °C. Three sulfur and NO_x storage cycles were performed for each sample.

The amounts of sulfur accumulated in the samples that were treated with $SO_2 + O_2$ and $SO_2 + H_2$ were measured with a LECO SC-432 sulfur analyzer. The quantitative estimation of sulfur is based on high-temperature combustion (1370 °C), where all sulfur-containing compounds are oxidized to SO₂ and SO₃. SO₃ is subsequently reduced to SO₂, and the total amount of SO₂ is analyzed in an IR cell.

3. Results

3.1. NO oxidation over Pt/SiO_2 and $Pt/BaO/Al_2O_3$

The measured NO, NO₂, and NO_x outlet signals from temperature-programmed NO oxidation experiments for all four Pt/SiO₂, and three Pt/BaO/Al₂O₃ catalysts are displayed in Figs. 1a and 1b, respectively. The corresponding thermodynamic equilibrium NO and NO₂ concentrations are also shown in the figures. The measured NO and NO₂ concentrations follow the thermodynamic equilibrium at temperatures above 350 °C. For all four Pt/SiO₂ samples, the oxidation of NO starts at about 100 °C and reaches 50% conversion at about 160 °C. For the Pt/BaO/Al₂O₃ samples, the NO oxidation starts at about 100 °C and reaches 50% conversion at about 170 °C.

A comparison of the results in Figs. 1a and 1b shows an obvious difference in the NO_x responses for the two catalyst types. For the Pt/SiO₂ samples, the NO_x signal is constant during the entire experiment, whereas for the Pt/BaO/Al₂O₃ samples, the NO_x signal exceeds the inlet NO concentration

Pt/Si samples

during NO oxidation experiments performed on (a) four Pt/SiO2 samples and (b) three Pt/BaO/Al₂O₃ samples (Pt/Ba/Al-1 (O), Pt/Ba/Al-2 (□), Pt/Ba/Al-3 (Δ)) with 450 ppm NO, 8% O₂ in Ar with a space velocity of 33 000 h^{-1} . Thermodynamic NO and NO₂ concentrations are given for comparison.

Fig. 2. SO₂ concentration as a function of time from exposing a SiO₂ sample to three SO₂ steps with 20 min/step. SO₂ steps: (1) 40 ppm SO₂ + 8% O₂; (2) 40 ppm SO₂; (3) 40 ppm SO₂ + 1.8% H₂.

as soon as the temperature ramp is started. As the temperature is further increased, the NO_x signal decreases to a minimum value and then increases again to a value slightly higher than the inlet NO concentration during the remaining time of the experiment.

3.2. Sulfur interaction with SiO_2 and Pt/SiO_2

Fig. 2 shows the results obtained for the SiO₂ sample and the three different sulfur exposures. Interestingly, the SO₂ outlet signal in all cases rapidly reaches the inlet level (40 ppm) as the SO_2 exposure starts.

NO,

NO₂ equilibrium conc.

Fig. 3. SO₂ concentration and catalyst temperature as a function of time from temperature step SO₂ oxidation experiment performed by exposing a Pt/SiO₂ catalyst to 40 ppm SO₂ and 8% O₂ in Ar with a space velocity of $33,000 \text{ h}^{-1}$.

Fig. 3 shows the outlet SO₂ concentration and catalyst temperature as a function of time during a SO₂ oxidation experiment performed with one of the Pt/SiO₂ samples (Pt/Si-1). The thermodynamic equilibrium SO₂ concentration is also shown. It is worth mentioning that the obtained SO₂ concentration (measured by nondispersive IR spectroscopy) may be slightly higher than the true values because of the interference of IR peaks, since the characteristic SO_3 peak (at 1391 cm⁻¹) coincides with the measured SO_2 peaks. However, the experiment was performed to estimate the catalytic activity for SO₂ oxidation; thus approximate SO₂ concentrations are sufficient. From Fig. 3 it is clear that the SO₂ oxidation starts at about 200 °C and increases with increasing temperature up to 450 °C. At higher temperatures, the SO₂ concentration increases again with increasing temperature.

The results from $SO_2 + H_2$ and $SO_2 + O_2$ exposure experiments are shown in Figs. 4a and 4b, respectively. The result from the SO₂ exposure experiment is similar to that from the $SO_2 + O_2$ experiment. The change in the SO_2 signal during the $SO_2 + H_2$ exposure step is small and occurs mainly in the beginning of the step as a drop in the SO₂ signal from 12 to 9 ppm. However, the signal rises again, reaches 12 ppm, and remains almost constant until the end of the step. The amount of adsorbed and converted SO2 during the SO₂ + H₂ step is \sim 9 µmol; however, only 0.4 µmol SO₂ desorbs from the catalyst after the sulfur exposure step. A significant amount of SO₂ is detected during the O₂ treatment performed after the temperature ramp (see the SO₂ desorption peak at about 175 min). The SO₂ desorbing during the temperature ramp and the oxygen treatment corresponds to about 4% of the number of surface Pt sites.

The results from the $SO_2 + O_2$ exposure experiment (shown in Fig. 4b) show an increase in the outlet SO_2 with time. The SO_2 signal reaches 20 ppm (50% of the inlet concentration) after 14 min. Thereafter, the signal increases more slowly and reaches 29 ppm toward the end of the sulfur step. A well-resolved SO_2 desorption peak is seen at about 640 °C. Furthermore, no SO_2 is detected during the oxygen treatment step. The amount of converted and adsorbed sulfur during the entire experiment is ~4.5 µmol, whereas 0.7 µmol

Fig. 4. SO₂ concentration and catalyst temperature as a function of time from SO₂ steps followed by temperature programmed desorption and O₂ treatment using one Pt/SiO₂ sample for each SO₂ exposure condition: (a) 40 ppm SO₂ + 1.8% H₂; (b) 40 ppm SO₂ + 8% O₂.

Fig. 5. NO, NO₂ and NO_x concentrations as a function of time from one Pt/BaO/Al₂O₃ sample and one BaO/Al₂O₃ sample during NO_x storage experiments using 630 ppm NO₂ and 8% O₂.

 SO_2 is detected during the TPD, which corresponds to 6.7% of the surface Pt sites. No SO_2 desorption is detected during the treatment with O_2 .

The quantitative sulfur analysis showed that no sulfur remained in Pt/Si-2 and Pt/Si-3 samples that were exposed to $SO_2 + H_2$ and $SO_2 + O_2$, respectively.

3.3. NO_x storage in Pt/BaO/Al₂O₃ and BaO/Al₂O₃ before exposure to sulfur

The outlet NO, NO₂, and NO_x signals obtained from Pt/Ba/Al-1 and Ba/Al-1, respectively, during a sulfur-free NO_x storage period are shown in Fig. 5. The NO₂ responses from the two samples are rather similar during the

first 12 min. Thereafter, the NO₂ signal from Ba/Al-1 increases with time, whereas the corresponding signal from the Pt/Ba/Al-1 remains stable. During the first minutes of the storage period, more NO is released from Ba/Al-1 compared with Pt/Ba/Al-1. However, with time the NO response from Ba/Al-1 declines to about 10 ppm, whereas the NO concentration after the Pt/Ba/Al-1 sample increases to ~110 ppm. After about 17 min of the storage phase, the NO_x signal from Pt/Ba/Al-1 reaches the inlet NO₂ concentration, whereas for Ba/Al-1 the corresponding signal remains below the inlet concentration until the end of the storage phase.

3.4. Sulfur storage in Pt/BaO/Al₂O₃ and BaO/Al₂O₃

As mentioned in Section 2, the NO_x storage capacity for the Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples was first determined in a sulfur-free atmosphere. The samples were then exposed to sulfur before each NO_x storage cycle. Three such SO_x and NO_x storage cycles were performed for each sample. In Fig. 6 the outlet SO₂ concentration during the three cycles is presented as a function of time for SO₂ + H₂ and SO₂ + O₂ exposures. The results for the Pt/BaO/Al₂O₃ samples are shown in Figs. 6a and 6c, and the corresponding results for the BaO/Al₂O₃ samples are shown in Figs. 6b and 6d. The upper parts of the figures show the results from the SO₂ + H₂ exposure, and the lower parts show the results for the $SO_2 + O_2$ treatment. Obviously, the amounts of SO_2 detected under the two sets of SO_2 exposure conditions are much lower for the Pt/BaO/Al₂O₃ samples than for the BaO/Al₂O₃ samples. For Pt/BaO/Al₂O₃, no outlet SO_2 is detected upon exposure to SO_2 in combination with H_2 , whereas during exposure to SO_2 in combination with O_2 , minor amounts of SO_2 are detected in the third sulfur exposure step. In the absence of Pt (BaO/Al₂O₃ samples), there is still some SO_2 in the outlet gas even 10 min after the SO_2 supply has been turned off. Furthermore, the outlet SO_2 concentration during the $SO_2 + O_2$ exposure is significantly lower than during the $SO_2 + H_2$ exposure.

Fig. 7 shows the outlet SO₂ concentration as a function of temperature during the temperature ramps performed at the end of the storage cycles. Figs. 7a and 7c are for the Pt/BaO/Al₂O₃ samples, and Figs. 7b and 7d show the results for the BaO/Al₂O₃ samples. No SO₂ desorption is observed from Pt/Ba/Al-3, which was exposed to SO₂ + H₂, and a minor amount of SO₂ is detected during the third temperature ramp from Pt/Ba/Al-2, which was exposed to SO₂ + O₂. For the BaO/Al₂O₃ samples, no SO₂ desorption is observed after either SO₂ exposure condition.

The results from the quantitative sulfur analysis of $Pt/BaO/Al_2O_3$ and BaO/Al_2O_3 samples exposed to $SO_2 + O_2$ and $SO_2 + H_2$ are displayed in Table 3 (recall that the amounts of washcoat materials of the catalysts are given in

Fig. 6. SO₂ concentration as a function of time during three sulfur treatment cycles for each SO₂ exposure condition performed using Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples (one sample from each kind for each SO₂ exposure condition). SO₂ exposure conditions: (a) and (b): 40 ppm SO₂ + 1.8% H₂; (c) and (d): 40 ppm SO₂ + 8% O₂.

Fig. 7. SO_2 concentration as a function of temperature during three heating ramp treatments to desorb SO_2 after three SO_2 exposure cycles for each SO_2 exposure condition performed using Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples (one sample from each kind for each SO_2 exposure condition). SO_2 exposure conditions: (a) and (b): 40 ppm $SO_2 + 1.8\%$ H₂; (c) and (d): $SO_2 + 8\%$ O₂.

Table 2

Amount of stored NO_x for Pt/BaCO₃/Al₂O₃ and BaCO₃/Al₂O₃ samples. The SO₂ concentration was 40 ppm in all exposures. The H₂ and O₂ concentrations were 1.8 and 8%, respectively. NO_x storage cycles were conducted by exposing the catalysts to 630 ppm NO₂ and 8% O₂. Space velocity in all cases was 33 000 h⁻¹

Sample	SO ₂ exposure	NO _x storage in relation to SO ₂ exposure time (mmol/ $g_{(BaO+alumina)}$)				
	condition	0 min	20 min	40 min	60 min	
Pt/Ba/Al-1	SO ₂	0.37	0.23	0.18	0.13	
Pt/Ba/Al-2	$SO_2 + O_2$	0.35	0.22	0.16	0.11	
Pt/Ba/Al-3	$SO_2 + H_2$	0.37	0.18	0.13	0.10	
Ba/Al-2	SO ₂	0.34	0.19	0.18	0.14	
Ba/Al-1	$SO_2 + O_2$	0.33	0.20	0.17	0.14	
Ba/Al-3	$SO_2 + H_2$	0.33	0.20	0.16	0.14	

Table 1). For the Pt-containing samples, the sample that was exposed to $SO_2 + H_2$ (Pt/Ba/Al-3) contained about 49% of the total amount of sulfur that the sample had been exposed

to, and the corresponding value for Pt/Ba/Al-2 (treated with $SO_2 + O_2$) was 87%. The amount of SO_2 desorbed during the $SO_2 + O_2$ exposure and the TPD steps for the latter corresponds to about 13% of the total amount of sulfur. Thus, the sum of this and the stored amounts accounts for the entire amount of sulfur. In contrast to the Pt/BaO/Al₂O₃ samples, no sulfur was found in the sulfur analysis of Ba/Al-1 and Ba/Al-3 that had been exposed to $SO_2 + O_2$ and $SO_2 + H_2$, respectively.

3.5. NO_x storage and regeneration of $Pt/BaO/Al_2O_3$ and BaO/Al_2O_3 after sulfur treatments

The NO and NO₂ concentrations during NO_x storage and thermal regeneration cycles for the Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples that had been exposed to SO₂ + H₂ and SO₂ + O₂ are displayed in Figs. 8 and 9, respectively.

Table 3 Sulfur balance for SO₂ exposure to NO_x storage catalysts in three different exposure conditions

Sample	SO ₂ exposure condition	Total SO _{2,in} (mmol)	SO _{2,out} step (mmol)	SO _{2,out} ramp (mmol)	S _(trapped) ^a (mmol)	Undetected S (mmol)
Pt/Ba/Al-3	$SO_2 + H_2$	0.343	0	0	0.168	0.175
Ba/Al-3	$SO_2 + H_2$	0.343	0.170	0	< 0.001	0.174
Pt/Ba/Al-2 Ba/Al-1	$\begin{array}{c} \mathrm{SO}_2 + \mathrm{O}_2 \\ \mathrm{SO}_2 + \mathrm{O}_2 \end{array}$	0.343 0.343	0.01 0.104	0.03 0	0.298 <0.001	0.005 0.230

^a Amounts of stored sulfur in the samples estimated by high temperature combustion using a LECO SC-432 sulfur analyzer.

 $SO_2 + H_2$

Fig. 8. NO and NO₂ concentrations as a function of time (a, b) and temperature (c, d) from one Pt/BaO/Al₂O₃ sample and one BaO/Al₂O₃ sample during four NO_x storage cycles using 630 ppm NO₂ and 8% O₂. Cycle 1: before exposure to sulfur, cycles 2–4: after exposure to 40 ppm SO₂ and 1.8% H₂ for 20 min prior to each NO_x storage cycle. Symbols: cycle 1 (\bigcirc), cycle 2 (\square), cycle 3 (\triangle), and cycle 4 (\blacksquare). Insets: NO concentration during the first min for cycles 1–4.

Parts a and b show the NO_x storage segments after the sulfur exposure periods (see Section 2) for Pt/BaO/Al₂O₃ and BaO/Al₂O₃, respectively. Parts c and d show the amount of desorbed NO and NO₂ observed during the thermal regeneration. Data from one sulfur-free NO_x storage cycle is shown for comparison. For all of the samples the inherent NO_x storage capacity is characterized by the slow rise in the NO₂ signal, as the samples are exposed to the NO₂/O₂ mixture, up to a steady-state level as the catalyst becomes saturated. Upon exposure to sulfur (both conditions), the rise in the NO₂ signal occurs more rapidly as the sulfur exposure time increases, indicating a gradual decrease in the NO_x storage capacity.

The impact of $SO_2 + H_2$ exposure on NO formation is seen clearly in Figs. 8a and 8b. For both Pt/Ba/Al-3 and Ba/Al-3 the outlet NO concentration is different after the sulfur exposure in comparison with the sulfur-free experiment. Immediately as the NO₂ + O₂ exposure starts after the sulfur exposure, a significant amount of NO₂ is reduced to NO. For Pt/Ba/Al-3, the amount of NO produced during the first seconds after the NO₂ + O₂ exposure begins increases after each sulfur exposure, whereas for the BaO/Al₂O₃ sample the opposite is true (see the insets in Figs. 8a and 8b). Furthermore, for Pt/Ba/Al-3, the NO signal reaches a stable steady-state level after all three sulfur exposure cycles, whereas for the Ba/Al-3 sample the decrease in the NO concentration continues during the entire NO_x storage period.

From Figs. 9a and 9b, it is clear that NO production during the NO_x storage cycles performed after exposure of Pt/Ba/Al-2 and Ba/Al-1 to SO₂ + O₂ is different from that of the sulfur-free cycle. For Pt/Ba/Al-2 the shapes of the NO response after the first sulfur exposure step and for the sulfur-free NO_x storage cycle are similar, however—almost 15 ppm higher. For the second and third cycles, only slightly more NO is produced in the beginning of the NO_x storage periods in comparison with the sulfur-free storage cycle (see the inset in Fig. 9a). The signal decreases thereafter with time (more significantly in the third cycle). The NO response from Ba/Al-1 is almost identical to the corresponding NO response from Ba/Al-3 (exposed to SO₂ + H₂).

As seen in Figs. 8 and 9 (c and d), the NO desorption peaks for the Pt-containing samples have maxima at around 400 °C, and almost all NO_x is completely released before the temperature reaches 600 °C for the sulfur-free cycle and 550 °C for the three sulfur-containing cycles. For the BaO/Al₂O₃ samples, the NO₂ and NO peaks have maxima at 455 and 530 °C, respectively. The NO_x release from the BaO/Al₂O₃ samples is completed at 650 °C for all four cycles.

The results from SO₂-only-treated samples are similar to those from the SO₂ + O₂ treatment.

Fig. 9. NO and NO₂ concentrations as a function of time (a, b) and temperature (c, d) from one Pt/BaO/Al₂O₃ sample and one BaO/Al₂O₃ sample during four NO_x storage cycles using 630 ppm NO₂ and 8% O₂. Cycle 1: before exposure to sulfur, cycles 2–4: after exposure to 40 ppm SO₂ and 8% O₂ for 20 min prior to each NO_x storage cycle. Symbols: cycle 1 (\bigcirc), cycle 2 (\square), cycle 3 (\triangle), and cycle 4 (\blacksquare). Insets: NO concentration during the first min for cycles 1–4.

4. Discussion

4.1. NO oxidation

The aim of the NO oxidation experiments was to determine the initial catalytic activity for the Pt-containing samples before exposure to SO₂. Clearly, both the Pt/BaO/Al₂O₃ and the Pt/SiO₂ samples exhibit high NO oxidation activity. The NO_x outlet signal from the Pt/BaO/Al₂O₃ samples varies with temperature, which is not the case for the Pt/SiO₂ samples. This is probably due to NO_x accumulation on alumina and barium at low temperatures and desorption at higher temperatures. Furthermore, the Pt/SiO₂ samples show a slightly higher NO oxidation activity than the Pt/BaO/Al₂O₃ catalysts, although the Pt dispersion is lower for the Pt/SiO₂ samples. The increase in the activity for NO oxidation with the increase in Pt particle size (decrease in Pt dispersion) has been related to the increase in stability against Pt oxide formation for larger particles [43].

4.2. Sulfur interaction with SiO_2 and Pt/SiO_2

To investigate the interaction of sulfur with Pt, it is important to avoid or at least limit sulfur interaction with the support. Since both barium and alumina have high affinity for sulfur, silica is used in this investigation because of the inertness of silica toward SO₂ [44,45]. From Fig. 2 it is clear that no sulfur adsorption occurs on the silica sample for any of the three exposure conditions. However, this may not be the case in the presence of Pt, where SO₃ and H₂S (produced from SO₂ reaction with O₂ and H₂, respectively) may interact with SiO₂. Concerning H₂S, Wang et al. [45] found no sulfur on a SiO₂ sample exposed to H₂S at 600 °C. Although SiO₂ is considered to be the support with less affinity for sulfur in comparison with TiO₂ and Al₂O₃ [25], the adsorption of minor amounts of H₂S and/or SO₃ on SiO₂ cannot be excluded. From Fig. 2 it is clear that SiO₂ itself has no activity for SO₂ conversion under either condition (oxidation or reduction).

The consumption of SO₂ during the exposure step and the release of SO₂ during the TPD and O₂ step are two important parameters in this investigation. From Fig. 4 it is obvious that the consumption of SO₂ is much higher during SO₂ + H₂ exposure in comparison with SO₂ + O₂ exposure. Furthermore, the SO₂ conversion is stable during the entire SO₂ + H₂ exposure, in contrast to SO₂ + O₂, where the SO₂ signal increases with time. It has previously been reported that H₂S and elemental sulfur are the main products for the reaction between SO₂ and H₂ over different catalyst types [46,47]. We have confirmed the formation of H₂S (results are not shown) by using a Pt/SiO₂ catalyst in a quartz tube reactor connected to a mass spectrometer. About 100 ppm H₂S

was detected by the mass spectrometer when the sample was exposed to 370 ppm SO₂ + 2% H₂ in Ar at 300 °C (space velocity = 20 000 h⁻¹). With reference to this result and the literature data, we suggest that the consumption of SO₂ during the SO₂ + H₂ exposure is partially due to the formation of H₂S. Sulfur deposit on Pt is another likely product, since some SO₂ was formed during the subsequent oxygen treatment.

For the SO₂ exposure in combination with O₂, the consumption of SO₂ is lower in comparison with the case with SO₂ + H₂. Since SO₂ is easily oxidized in the presence of O₂, SO₃ is the most probable product during this exposure condition. The increase in the SO₂ outlet signal during the SO₂ + O₂ exposure indicates a decrease in SO₂ conversion, which is probably due to catalyst deactivation with time. Furthermore, the amount of SO₂ detected during the TPD is significantly higher than the corresponding amount for the SO₂ + H₂ exposure. The SO₂ desorption during the TPD may originate from Pt, although SiO₂ sites in the vicinity of Pt may be an additional origin for SO₂ adsorption. No SO₂ desorption was detected during the O₂ treatment, probably because no reduced sulfur species were present on the sample surface during this exposure condition (SO₂ + O₂).

4.3. Sulfur storage in Pt/BaO/Al₂O₃ and BaO/Al₂O₃

From Figs. 6 and 7 it is clear that Pt plays an important role in the storage and release of sulfur. Significantly more SO₂ is detected during the sulfur exposure steps from the BaO/Al₂O₃ samples compared with the Pt/BaO/Al₂O₃ catalysts. This means that the presence of Pt either gives rise to the formation of gas-phase sulfur species other than SO₂ or promotes the storage of sulfur in the washcoat. As mentioned above, SO₂ exposure in combination with H₂ or O₂ results in the formation of H₂S and SO₃, respectively. It is likely that part of the formed H₂S desorbs from the sample, whereas SO₃ most likely is trapped in the sample. This suggestion is supported by the quantitative sulfur analysis, which showed that significantly less sulfur is accumulated in the sample that was treated with SO₂ + O₂.

The stability of the sulfur compounds stored in the samples seems to be influenced by the presence of Pt. For BaO/Al₂O₃ samples weakly adsorbed SO₂ species start to desorb as soon as the SO₂ supply is switched off, which is not the case with the Pt/BaO/Al₂O₃ samples (see Fig. 5). No sulfur desorption is detected from the BaO/Al₂O₃ samples during the temperature ramps. It is likely that SO₂ is stored as sulfites or surface sulfates in these samples, since the formation of bulk sulfate seems to be related to the presence of Pt [48]. No sulfur was found in the samples when they were analyzed a few months after the exposure experiments, although the sulfur deactivation of the samples was obvious when the NO_x storage cycles were conducted. This implies that only weakly adsorbed sulfur species were formed in these samples. Thus, these species are expected to be re-

placed by carbonates (and/or hydroxyls) as the samples are kept in air.

For Pt/BaO/Al₂O₃ samples SO₂ desorption is only observed during the third temperature ramp (performed after the third NO_x storage cycle) and only from the sample that was treated with SO₂ + O₂ (see Fig. 7). It is likely that Pt lowers the sulfate decomposition temperature. However, barium sulfate may remain stable even at the end of the temperature ramps (600 °C). Thus, the desorbed SO₂ from the Pt/BaO/Al₂O₃ sample may originate from the decomposition of aluminum sulfate, which decomposes at temperatures \geq 500 °C [35].

Sulfur storage on BaO/Al₂O₃ seems to be influenced by the exposure conditions, where in the presence of O₂ significantly less SO₂ is detected during the exposure cycles in comparison with SO₂ + H₂ exposure. The presence of O₂ may promote the storage of sulfur on storage sites by providing the surface with oxygen to facilitate the formation of sulfites or surface sulfates. Summers [49] found that the adsorption of SO₂ on alumina at 540 °C increased linearly with increasing oxygen concentration and suggested that impurities in the alumina (particularly Fe) may catalyze the reaction of SO₂ with oxygen, which leads to the formation of aluminum sulfite. The accumulation of sulfur on alumina in both Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples has previously been observed [25,35,50,51].

4.4. NO_x storage in Pt/BaO/Al₂O₃ and BaO/Al₂O₃ before and after sulfur treatments

The results from the sulfur-free NO_x storage cycles (shown in addition to the cycles after sulfur exposures in Figs. 8-9) indicate that samples with the same composition exhibit similar NO_x storage behaviors. However, there are significant differences between the results from the two sample types. These differences are seen in the NO and NO₂ responses (see Fig. 5). From the slope of the NO_x signals it seems that the presence of Pt slightly accelerates the NO_x storage process during the first minutes of the lean period. This is seen from the slower increase of the NO_x signal for the Pt-containing sample in comparison with the corresponding NO_x signal for the BaO/Al₂O₃ sample. The role of Pt in this respect may be connected with providing the adjacent barium sites with NO₂. The importance of NO₂ spillover between Pt and barium sites in the NO_x storage mechanism is discussed by Olsson et al. [14] in relation to mean field kinetic modeling of NO_x storage over Pt/BaO/Al₂O₃ catalysts. The presence of Pt in the catalyst may affect the NO_x uptake in the beginning of the storage cycles, even when NO_x is in the form of NO₂. This is indicated in data shown by Prinetto et al. [15], with a more extended period of complete uptake of NO₂, when Pt is present in the catalyst.

A comparison of the NO_x storage capacity between Pt/BaO/Al₂O₃ and BaO/Al₂O₃ shows that the two catalyst types have roughly the same NO_x storage capacity before the sulfur exposure (see Table 2). The sulfur-free NO_x stor-

age experiments show that the NO_x concentration for all Pt/BaO/Al₂O₃ samples reaches the inlet concentration after about 18 min. For the BaO/Al₂O₃ sample, the NO_x concentration is below the inlet concentration during the entire exposure time, indicating that the storage process is still proceeding (illustrated in Fig. 5). From these results, we suggest that new NO_x storage sites are slowly created in the case of the BaO/Al₂O₃ samples. This may be due to BaCO₃ transformation to BaO, which is suggested to be an initial step for NO_x storage [52]. For the Pt-containing samples this transformation seems to be terminated before the NO_x storage cycles have begun (probably during the calcination and/or the Pt dispersion measurements).

Below we discuss possible pathways for sulfur deterioration of the NO_x storage capacity of Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples:

 $Pt/BaO/Al_2O_3$: The SO₂ exposure in combination with H₂ may give rise to the formation of reduced sulfur-containing species that accumulate on Pt sites and are stored on barium sites in the vicinity of Pt particles. These reduced sulfur species are then oxidized by NO2 when the NO2/O2 exposure is initiated, resulting in the formation of SO₂ and SO₃, which may be trapped in the sample as surface and bulk sulfates. This oxidation process results in enhancement of NO formation during NO_x exposure, in addition to the NO, which are related to the NO_x storage process (release of one NO for adsorption of three NO_2 molecules [4,7,12, 15,16,20,53]). Unlike the SO₂ + H₂ treatment, SO₂ + O₂ exposure results in the formation of SO₃ during the sulfur exposure steps. SO₃ is then trapped as bulk sulfates during the sulfur exposure step according to the following reactions:

$$\mathrm{SO}_2 + (1/2)\mathrm{O}_2 \to \mathrm{SO}_3,\tag{2}$$

$$BaO + SO_3 \rightarrow BaSO_4.$$
 (3)

This implies that NO₂ is not consumed for oxidation of surface species, as was the case with SO₂ + H₂ exposure. Consequently, no enhancement of NO release is observed for this exposure condition (see Fig. 9). On the other hand, the decrease in the NO_x signal with time during the third cycle in this experiment indicates that the elongated SO₂ + O₂ exposure may result in Pt oxide formation.

 BaO/Al_2O_3 : The reduction and oxidation of SO₂ by H₂ and O₂ is probably slow because of the absence of Pt in these samples. A probable pathway for sulfur accumulation and consequent deterioration of the NO_x storage sites is described by the following reactions:

$$BaO + SO_2 \rightarrow BaO - SO_2, \tag{4}$$

$$BaO-SO_2 + NO_2 \rightarrow BaSO_4 + NO.$$
 (5)

The formation of NO in the reaction above explains the high NO concentration in the beginning of the $NO_2 + O_2$ expo-

sure step (Figs. 8b and 9b). Interestingly, there is a decrease in NO formation with increasing sulfur exposure time, which indicates that the amount of free storage sites decreases with increased sulfur exposure time. Since no sulfur was found in the samples in the postanalysis, we suggest that only weakly adsorbed species are formed in these samples (sulfites/surface sulfates).

The decrease in the amount of available storage sites as a function of sulfur exposure time is also indicated in Figs. 8 and 9 (c and d), which display the NO and NO₂ signals recorded during the thermal treatment performed at the end of each storage cycle. For both Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples, the amount of desorbed NO₂ and NO observed after the NO_x storage cycles decreases with increasing sulfur exposure time.

As seen from Table 2, both samples are affected by the three sulfur exposure conditions (SO₂-only, SO₂ + O_2 , and $SO_2 + H_2$). In the case of the Pt/BaO/Al₂O₃ samples, the fastest deactivation of the NO_x storage capacity is caused by the exposure to SO_2 in combination with H_2 , whereas the exposure to SO₂ causes the same degree of deactivation as exposure to SO₂ in combination with O₂. Obviously, the decay in the NO_x storage capacity is not a simple function of the total amount of sulfur accumulated in the samples (see Table 3). Based on this and the similar deactivation behavior for the BaO/Al₂O₃ during all three conditions, we suggest that the presence of Pt gives rise to the formation of sulfur-containing species that may spill over to surface barium sites. The sulfur deposits on surface barium sites may result in the faster deactivation of the NO_x storage capacity, since the storage of NO_x mostly occurs on the surface layers of barium [8,54]. Recently, Wei et al. [55] highlighted the role of Pt in both the sulfation of barium and alumina and the desulfation process of the catalysts. According to the authors, Pt promotes the hydrogen spillover, which is important for the reduction of barium sulfates. That result illustrates the importance of close contact between Pt and barium for the regeneration of the NO_x storage capacity. Accordingly, as Pt particles facilitate the regeneration of the NO_x storage capacity, it is not unlikely that they play an important role in the poisoning of the NO_x storage sites.

In a previous work by Amberntsson et al. [32] the influence of SO₂ on the NO_x storage performance was studied with the use of lean (NO, O₂ and C₃H₆) and rich (NO and C₃H₆) cycles. SO₂ was added to the feed during either the lean or the rich phase. It was shown that the NO_x storage capacity declined faster upon rich SO₂ exposure in comparison with lean SO₂ exposure. The difference between lean and rich SO₂ exposure is more pronounced in the work of Amberntsson et al. [32] compared with the present study. This is probably due to differences in the NO_x regeneration process. In the present work Pt is not so important for the NO_x reduction process, since the NO_x storage sites are regenerated by heat treatment, giving thermal desorption of NO_x, and not by switching to rich conditions.

5. Conclusions

In this investigation we have exposed Pt/SiO₂, Pt/BaO/ Al_2O_3 , and BaO/Al_2O_3 samples to SO_2 , $SO_2 + O_2$, and $SO_2 + H_2$ at 300 °C to study the effect of SO_2 exposure conditions on sulfur accumulation on Pt (in Pt/SiO2 samples) and the NO_x storage performance of Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples. We found that the SO₂ outlet concentration over Pt/SiO₂ increased with time upon exposure to $SO_2 + O_2$ and that significant amounts of SO_2 desorb from these samples during the temperature ramps performed after the sulfur exposure steps. In contrast, upon exposure to $SO_2 + H_2$, no deactivation of Pt was observed, and only minor amounts of SO₂ desorb during the temperature ramp. However, exposure to oxygen at 700 °C resulted in SO₂ desorption, which was not the case with the SO₂ and SO₂ + O_2 exposures. We can therefore conclude that the exposure to SO_2 in combination with H_2 gives rise to the formation of sulfur-containing species on the samples, probably on Pt.

Both SO₂ exposures with O₂ and H₂ caused deactivation of the NO_x storage capacity of the Pt/BaO/Al₂O₃ and BaO/Al₂O₃ samples. However, for the Pt-containing samples the deactivation proceeded faster upon exposure to SO₂ in combination with H_2 than for the other two exposure conditions, although less sulfur was accumulated in the sample. This suggests that the sulfur-containing species that are formed during the reaction between SO₂ and H₂ interact with surface barium sites, which are important for the NO_x storage process. Moreover, we found that the presence of Pt enhances the adsorption of SO₂ under all exposure conditions. In the absence of Pt more SO₂ is adsorbed in the presence of O_2 , in comparison with SO_2 -only and $SO_2 + H_2$ exposures. However, there is no correlation between the total amount of adsorbed sulfur in the samples and the deactivation rate of the NO_x storage capacity. This is most probably due to the adsorption of sulfur on sites that are not necessarily important for the NO_x storage process.

Acknowledgments

This work was performed at the Competence Centre for Catalysis, which is financially supported by the Swedish National Energy Agency and the member companies: AB Volvo, Johnson Matthey-CSD, Saab Automobile Powertrain AB, Perstorp AB, AVL-MTC AB, Albemarle Catalysts, and the Swedish Space Corporation.

References

- [1] R.M. Heck, R.J. Farrauto, Appl. Catal. A: Gen. 221 (2001) 443.
- [2] S. Matsumoto, CATECH 4 (2000) 102.
- [3] W. Bögner, M. Krämer, B. Krutzsch, S. Pischinger, D. Voigtlander, G. Wenninger, F. Wirbeleit, M.S. Brogan, R.J. Brisley, D.E. Webster, Appl. Catal. B: Environ. 7 (1995) 153.
- [4] N.W. Cant, M.J. Patterson, Catal. Today 73 (2002) 271.

- [5] J. Dawody, M. Skoglundh, S. Wall, E. Fridell, J. Molec. Catal. A: Chem. 225 (2005).
- [6] W.S. Epling, G.C. Campbell, J.E. Parks, Catal. Lett. 90 (2003) 45.
- [7] E. Fridell, H. Persson, B. Westerberg, L. Olsson, M. Skoglundh, Catal. Lett. 66 (2000) 71.
- [8] D. James, E. Fourre, M. Ishii, M. Bowker, Appl. Catal. B: Environ. 45 (2003) 147.
- [9] L. Lietti, P. Forzatti, I. Nova, E. Tronconi, J. Catal. 204 (2001) 175.
- [10] H. Mahzoul, J.F. Brilhac, P. Gilot, Appl. Catal. B: Environ. 20 (1999) 47.
- [11] I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, Catal. Today 75 (2002) 431.
- [12] I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, F. Prinetto, G. Ghiotti, J. Catal. 222 (2004) 377.
- [13] L. Olsson, E. Fridell, M. Skoglundh, B. Andersson, Catal. Today 73 (2002) 263.
- [14] L. Olsson, H. Persson, E. Fridell, M. Skoglundh, B. Andersson, J. Phys. Chem. B 105 (2001) 6895.
- [15] F. Prinetto, G. Ghiotti, I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, Phys. Chem. Chem. Phys. 5 (2003) 4428.
- [16] F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. B 105 (2001) 12732.
- [17] F. Rodrigues, L. Juste, C. Potvin, J.F. Tempère, G. Blanchard, G. Djéga-Mariadassou, Catal. Lett. 72 (2001) 59.
- [18] S. Salasc, M. Skoglundh, E. Fridell, Appl. Catal. B: Environ. 36 (2002) 145.
- [19] C. Sedlmair, K. Seshan, A. Jentys, J.A. Lercher, J. Catal. 214 (2003) 308.
- [20] P. Broqvist, I. Panas, E. Fridell, H. Persson, J. Phys. Chem. B 106 (2002) 137.
- [21] N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S.-i. Matsumoto, T. Tanizawa, Catal. Today 27 (1996) 63.
- [22] N. Miyoshi, S. Matsumoto, Stud. Surf. Sci. Catal. 121 (1999) 245.
- [23] A. Amberntsson, B. Westerberg, P. Engström, E. Fridell, M. Skoglundh, Stud. Surf. Sci. Catal. 126 (1999) 317.
- [24] P. Engström, A. Amberntsson, M. Skoglundh, E. Fridell, G. Smedler, Appl. Catal. B: Environ. 22 (1999) L241.
- [25] S.i. Matsumoto, Y. Ikeda, H. Suzuki, M. Ogai, N. Miyoshi, Appl. Catal. B: Environ. 25 (2000) 115.
- [26] H. Mahzoul, P. Gilot, J.-F. Brilhac, B.R. Stanmore, Top. Catal. 16/17 (2001) 293.
- [27] B.-H. Jang, T.-H. Yeon, H.-S. Han, Y.-K. Park, J.-E. Yie, Catal. Lett. 77 (2001) 21.
- [28] A. Amberntsson, E. Fridell, M. Skoglundh, Appl. Catal. B: Environ. 46 (2003) 429.
- [29] J.-R. Chang, S.-L. Chang, T.-B. Lin, J. Catal. 169 (1997) 338.
- [30] E. Fridell, H. Persson, L. Olsson, B. Westerberg, A. Amberntsson, M. Skoglundh, Top. Catal. 16/17 (2001) 133.
- [31] A. Amberntsson, M. Skoglundh, M. Jonsson, E. Fridell, Catal. Today 73 (2002) 279.
- [32] A. Amberntsson, M. Skoglundh, S. Ljungström, E. Fridell, J. Catal. 217 (2003) 253.
- [33] J.P. Breen, M. Marella, C. Pistarino, J.R.H. Ross, Catal. Lett. 80 (2002) 123.
- [34] C. Courson, A. Khalfi, H. Mahzoul, S. Hodjati, N. Moral, A. Kiennemann, P. Gilot, Catal. Commun. 3 (2002) 471.
- [35] H. Mahzoul, L. Limousy, J.F. Brilhac, P. Gilot, J. Appl. Pyrol. 56 (2000) 179.
- [36] S. Erkfeldt, M. Skoglundh, M. Larsson, Stud. Surf. Sci. Catal. 126 (1999) 211.
- [37] S. Poulston, R.R. Rajaram, Catal. Today 81 (2003) 603.
- [38] K. Yamazaki, T. Suzuki, N. Takahashi, K. Yokota, M. Sugiura, Appl. Catal. B: Environ. 30 (2001) 459.
- [39] P.T. Fanson, M.R. Horton, W.N. Delgass, J. Lauterbach, Appl. Catal. B: Environ. 46 (2003) 393.
- [40] M. Skoglundh, H. Johansson, L. Löwendahl, K. Jansson, L. Dahl, B. Hirschauer, Appl. Catal. B: Environ. 7 (1996) 299.

- [41] M.H. Kim, J.R. Ebner, R.M. Friedman, M.A. Vannice, J. Catal. 204 (2001) 348.
- [42] P. Lööf, B. Kasemo, K.-E. Keck, J. Catal. 118 (1989) 339.
- [43] L. Olsson, E. Fridell, J. Catal. 210 (2002) 340.
- [44] E. Xue, K. Seshan, J.R.H. Ross, Appl. Catal. B: Environ. 11 (1996) 65.
- [45] T. Wang, A. Vazquez, A. Kato, L.D. Schmidt, J. Catal. 78 (1982) 306.
- [46] D.L. Murdock, G.A. Atwood, Ind. Eng. Chem. Res. 13 (1974) 254.
- [47] K.-T. Li, Y.-C. Hung, Appl. Catal. B: Environ. 40 (2003) 13.
- [48] Z. Liu, J.A. Anderson, J. Catal. 228 (2004) 243.

- [49] J.C. Summers, Environ. Sci. Technol. 13 (1979) 321.
- [50] L. Limousy, H. Mahzoul, J.F. Brilhac, P. Gilot, F. Garin, G. Maire, Appl. Catal. B: Environ. 42 (2003) 237.
- [51] D. Uy, K.A. Wiegand, A.E. O'Neill, M.A. Dearth, W.H. Weber, J. Phys. Chem. B 106 (2002) 387.
- [52] P. Broqvist, I. Panas, H. Grönbeck, J. Phys. Chem. B (2005), accepted submitted for publication.
- [53] P. Broqvist, H. Grönbeck, I. Panas, Surf. Sci. 554 (2004) 262.
- [54] J.A. Anderson, M. Fernandez-Garcia, Chem. Eng. Res. Dev. 78A (2000) 935.
- [55] X. Wei, X. Liu, M. Deeba, Appl. Catal. B: Environ., in press.